, кстати обзор вышел на 480ую.
Вкратце самое главное.
В целом питалово годное у рефа.
Ну и ништяки есть в новой архитектуре.
Начиная с front-end чипа, мы видим, что GCN 1.3 включает ни много ни мало, а семь планировщиков, распределяющих блоки инструкций (wavefronts в терминологии AMD, в то время как NVIDIA использует аналогичный термин warp) на исполнение в массиве Compute Units. Надо отметить, что современный вид этот раздел GPU принял еще в GCN 1.2 (Tonga и Fiji), и если AMD внесла сюда какие-либо изменения, то на блок-схеме их не заметить. Тем не менее, AMD справедливо привлекает внимание к планировщикам в Polaris сейчас.
Наличие независимых планировщиков для графики (GCP — Graphics Command Processor) и вычислений общего назначения (ACE — Asynchronous Compute Engine) начиная с первых образцов архитектуры GCN наделяет процессоры AMD возможностью выполнять шейдерные и вычислительные инструкции одновременно, а в GCN 1.2 вместо четырех из восьми блоков ACE разработчики ввели два блока HWS (Hardware Scheduler), каждый из которых функционально эквивалентен двум ACE, но также позволяет прерывать исполнение одного потока инструкций, выделяя время для более приоритетных задач. К слову, хотя HWS впервые фигурируют в описании Fiji, чип Tonga получил их раньше, что подтверждают ускорители FirePro на его основе, в которых впервые была реализована полностью аппаратная виртуализация GPU.
Аппаратные планировщики, которые AMD сохранила в кремнии, не последовав примеру NVIDIA (которая сделала обратное еще в архитектуре Kepler), требуют места на кристалле, но сейчас эта возможность, доселе мало востребованная в потребительском секторе, позволит чипам AMD засиять. Два главных тренда в игровой графике этого года — DirectX 12 и VR — делают упор на асинхронные вычисления.
Compute Unit в GCN 1.3 претерпел ряд изменений, связанных с предвыборкой и кешированием инструкций, обращениям к кешу L2, которые в совокупности повышают удельную производительность CU на 15% (по сравнению с чипом Hawaii). Функциональное нововведение заключается в поддержке вычислений половинной точности (FP16), которые используются в программах компьютерного зрения и машинного обучения.
GCN 1.3 предоставляет прямой доступ к внутреннему набору инструкций (ISA) потоковых процессоров, за счет которого разработчики могут писать максимально «низкоуровневый» и быстрый код — в противоположность шейдерным языкам DirectX и OpenGL, абстрагированным от железа, на котором работает шейдерная программа. Функция на данный момент доступна в API DirectX 11, DX 12 и Vulkan.
Но если какой-то аспект GCN и требовал повышенного внимания со стороны инженеров AMD, то это производительность GPU в обработке геометрии, в особенности — при тесселяции высокой степени. Геометрические процессоры в GCN 1.3 способны на ранних этапах конвейера исключать полигоны нулевого размера либо полигоны, не имеющие пикселов в проекции (проблема, которая усугубляется при использовании мультисемплинга как метода полноэкранного сглаживания), и получили кеш индексов, снижающий поглощение ресурсов при рендеринге мелкой дублирующейся геометрии.
Обсуждая спецификации Radeon RX 480, мы упомянули, что хотя Polaris 10 обладает сравнительно небольшой пропускной способностью шины RAM для ядра данной вычислительной мощности, видеокарта обладает такой скоростью обращения к данным, как если бы ПСП была увеличена на 40%. Вот что позволило достигнуть этой цели.
Кеш L2 удвоенного объема: с 512 Кбайт до 1 Мбайт в Bonnaire и Polaris 11 соответственно, с 1 Мбайт до 2 Мбайт в Tonga и Polaris 10.
Дельта-компрессия цвета с отношениями вплоть до 8:1. Эта методика, представленная ранее в чипах Tonga и Fiji на базе архитектуры GCN 1.2, повысила свою эффективность в GCN 1.3 на 17%.
Честно сказать, по производительности не айс вышла, большего ожидал, мой 290Х 1040 МГц будет даже посильнее!